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Abstract. Climate models’ outputs are affected by biases that need to be detected and adjusted to model climate impacts. 

Many climate hazards and climate-related impacts are associated with the interaction between multiple drivers, i.e. by 

compound events. So far climate model biases are typically assessed based on the hazard of interest, and it is unclear how 

much a potential bias in the dependence of the hazard drivers contributes to the overall bias and how the biases in the drivers 

interact. Here, based on copula theory, we develop a multivariate bias assessment framework, which allows for disentangling 25 

the biases in hazard indicators in terms of the underlying univariate drivers and their statistical dependence. Based on this 

framework, we dissect biases in fire and heat stress hazards in a suite of global climate models by considering two simplified 

hazard indicators, the wet-bulb globe temperature (WBGT) and the Chandler Burning Index (CBI). Both indices solely rely on 

temperature and relative humidity. The spatial pattern of the hazards indicators is well represented by climate models. 

However, substantial biases exist in the representation of extreme conditions, especially in the CBI (spatial average of absolute 30 

bias: 21°C) due to the biases driven by relative humidity (20°C). Biases in WBGT (1.1°C) are small compared to the biases 
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driven by temperature (1.9°C) and relative humidity (1.4°C), as the two biases compensate each other. In many regions, also 

biases related to the statistical dependence (0.85°C) are important for WBGT, which indicates that well-designed physically-

based multivariate bias adjustment should be considered for hazards and impacts that depend on multiple drivers. The proposed 

compound event-oriented evaluation of climate model biases is easily applicable to other hazard types. Furthermore, it can 35 

contribute to improved present and future risk assessments through increasing our understanding of the biases’ sources in the 

simulation of climate impacts. 

1 Introduction 

Understanding and assessing the risk of high-impact events induced by the combination of multiple climate drivers and/or 

hazards, referred to as compound events, is challenging (e.g., Bevacqua et al., 2017; Manning et al., 2018; Zscheischler et al., 40 

2020a). One of the reasons is that many high-impact events are caused by multiple variables that may not be extreme 

themselves, but their combination leads to an extreme impact (Zscheischler et al., 2018). For example, the risks associated 

with combined high temperature and high/low relative humidity such as heat stress and fires, can manifest in heat-related 

human fatalities (Raymond et al., 2020) and fire-induced tree mortality (Brando et al., 2014) even if the two contributing 

variables are not necessarily extreme in a statistical sense. In the future, combinations of climate variables leading to 45 

disproportionate impacts will be affected by global warming, and reliable risk assessments are required (Fischer and Knutti, 

2013; Russo et al., 2017; Schär, 2016; Raymond et al., 2020; Jézéquel et al., 2020; Zscheischler et al., 2020a). Therefore, a 

better understanding of how climate models represent the joint behaviour of variables behind compound events, such as 

temperature and relative humidity, is crucial to correctly quantify their associated hazards today and in the future (Zscheischler 

et al., 2018).  50 

Typically, the raw climate model data contains biases, which lead to biased estimates of climate risks (Maraun et al., 2017). 

Evaluating, i.e. assessing and understanding such biases is a crucial step towards impact modelling and thus assessment of 

future climate risks. Climate model evaluation is very often univariate, i.e. does not take into account the multivariate nature 

of many hazards that are driven by the interplay of multiple contributing variables (Vezzoli et al., 2017; Zscheischler et al., 

2018, 2019; Francois et al., 2020). However, evaluating the model representation of the individual contributing variables 55 

individually, and hence disregarding both the biases in the dependence between the contributing variables and how the biases 

in the drivers interact and influence the hazard, cannot provide direct information regarding the biases in the resulting hazard 

indicator. Furthermore, evaluating the hazard indicator only, e.g. heat stress regardless of the contributing variables 

temperature and relative humidity, may hide compensating biases in the contributing variables, even if the hazard indicator 

appears to be well represented. An evaluation of climate models that considers the underlying multivariate nature of the hazards 60 

can provide a better physical understanding of the relevant model skills. In turn, a better understanding of model skills can 

serve as a basis for better adjustment of the biases and/or selection of best performing models, which are crucial for hazard 

assessment both in the present and future climate. However, studies evaluating the climate model multivariate representation 
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of hazard indicator are still rare (Bevacqua et al., 2019; Zscheischler et al., 2020b) and little is known on the effects of those 

biases on multivariate hazards (Fischer and Knutti, 2013; Zscheischler et al., 2018).  65 

In this study we propose a copula-based multivariate bias-assessment framework, which allows for decomposing the sources 

of bias in hazard indicators. We employ global climate model outputs from the fifth phase of the Coupled Model 

Intercomparison Project (CMIP5) and consider two simplified hazard indices, the Chandler burning index (CBI) for fire hazard 

and the wet bulb globe temperature (WBGT) index for heat stress, both driven solely by temperature and relative humidity. 

Figure 1 illustrates the main rationale of the multivariate bias-assessment framework. Both hazard indices, CBI and WBGT, 70 

are influenced by the bivariate distribution of temperature and relative humidity (Figure 1c). Based on copula-theory, such a 

bivariate distribution can be decomposed in terms of the marginal distributions of temperature and relative humidity (Figure 

1a, d), and their statistical dependence (Figure 1b). Hence, such a copula-based decomposition allows for understanding the 

biases in the hazard estimates in terms of both the contribution from the marginal distributions individually (Figure 1a,d; see 

difference between grey and black lines), and from their statistical dependence (Figure 1b) (Vezzoli et al. 2017; Bevacqua et 75 

al., 2019). We present a methodology to quantify the role played by the biases in temperature, relative humidity, and their 

dependence, to the final bias in the fire and heat stress indices as simulated by climate models.  

2 Data 

2.1 Pre-processing 

We employ 6-hourly data of 2-meter air Temperature (T) and Relative Humidity (RH) during the period 1979-2005 from 80 

ERA-Interim reanalysis (Berrisford et al., 2011; Dee et al. 2011) and twelve models from the CMIP5 multi-model ensemble 

(Taylor et al., 2012): ACCESS1-0, ACCESS1-3, bcc-csm1-1-m, BNU-ESM, CNRM-CM5, GFDL-ESM2G, GFDL-ESM2M, 

inmcm4, IPSL-CM5A-LR, NorESM1-M, GFDL-CM3 and  IPSL-CM5A-MR; leap days were removed. To allow for an 

intermodel comparison, data were bilinearly interpolated to a 2.5° by 2.5° regular latitude-longitude grid. All oceanic grid cells 

as well as those beneath 60°S were removed from all analysis, given that arguably no heat stress and fire risk exists in these 85 

areas.  

Following Zscheischler et al. (2019), we restrict our analysis to the hottest calendar month of the year, which is selected based 

on the climatology of ERA-Interim data at each grid point. This choice was made because arguably heat stress and fire hazards 

tend to be more frequent during the warmest period of the year, and it avoids dealing with seasonality. Finally, for each model 

and location, we consider the T and RH values at the daily 6-hourly time steps corresponding to the daily maximum temperature 90 

within the hottest month. The above results in a time series for each location and model, with daily values of the pair (T, RH). 

The resulting time series data are autocorrelated, which can compromise the interpretation of the statistical tests that we apply 

in the analysis (Yue et al., 2002; Dale and Fortin, 2009). Therefore, we carry out the analysis on the de-correlated time series, 

which are obtained from the original through subsampling every N=9 days, this is the minimum lag required to remove the 

autocorrelation in T and RH time series data (at 95% confidence level), calculated for all grid points in ERA-Interim and the 95 
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CMIP5 models. Finally, all time series are sampled with the frequency of N. This is done N-times using different start epochs, 

where the first sampled time series starts with time epoch one, the second sampled time series with time epoch two and so on 

up to nine. The de-correlated time series of T and RH will henceforth be simply referred to as samples in the following sections. 

In the Appendix, Figure A1 illustrates, for a representative location in Brazil, one of the nine resulting samples of T and RH 

for ERA-Interim and for a selection of CMIP5 models. The figure also shows how the bivariate interaction of these variables 100 

drive the fire and heat stress indices (coloured isolines) introduced in the next section.  

2.2 Fire hazard and heat stress indices 

We quantify fire and heat stress hazards based on two indices, i.e. CBI and WBGT, respectively. While more advanced and 

sophisticated indices exist for both of these hazards (e.g. Van Wagner, 1987; Fiala et al., 2011), here we employ these two 

simplified indices. Our aim is to provide a methodological framework for a compound event-oriented evaluation of hazard 105 

indicators. Hence, employing simplified indices allows for the development of a test case of the methodological framework. 

We do not aim at providing an accurate assessment of the hazard; nevertheless, our results will provide indications that can 

serve as a basis for follow-up studies of more complex fire and heat stress hazards.  

The CBI index was employed, for example, for studying fire risk in the United States (McCutchan and Main, 1989) and 

globally (Roads et al., 2008). The index is based on air T (°C) and RH (%): 110 

𝐶𝐵𝐼 =
((110−1.73∗𝑅𝐻)−0.54∗(10.20−𝑇))∗1.24∗10−0.0142∗𝑅𝐻

60
       (1) 

The ‘simplified WBGT’ (from now on WBGT for sake of brevity) index was developed by the American College of Sports 

Medicine (ACSM, 1984) as an indicator of heat stress for average daytime conditions outdoors. The index is defined as: 

𝑊𝐵𝐺𝑇 = 0.56𝑇 + 0.393𝑒 + 3.94          (2) 

where 𝑒 = (𝑅𝐻/100) ∗ 6.105𝑒(
17.27𝑇

237.7+𝑇⁄ )is water vapour pressure (expressed in hPa), which depends on air temperature 115 

and relative humidity. 

3 Methods 

This section presents the conceptual framework and a bias decomposition methodology used to analyse the multivariate indices 

described above. We then present an overview of the data processing before detailing the conventional statistical tests we have 

incorporated into our test suite. 120 

3.1 Copula-based conceptual framework 

As both CBI and WBGT are functions of T and RH, it follows that their distributions are determined by the joint distribution 

of T and RH. Copula theory provides us with a natural way to decompose the joint distribution of T and RH in terms of the 

marginal distributions of T and RH (the distributions of the individual variables considered in isolation) and a term, known as 
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the copula, that describes the dependence between T and RH (Figure 1). This allows us to understand how bias in each of these 125 

components contributes to the bias in CBI and WBGT. 

A copula is a function that completely characterizes the dependence structure between random variables, in our case T and 

RH.  Sklar’s theorem (Sklar, 1959) is a fundamental result in copula theory, which states that the joint distribution of the 

random variables is determined by the marginal distributions and their copula. Mathematically, in our bivariate case, given the 

two variables T and RH, with marginal cumulative distribution functions (CDFs) FT and FRH, and marginal probability density 130 

functions (pdfs) fT and fRH, following Sklar’s theorem, the joint pdf fT, RH can be decomposed as: 

𝑓𝑇,𝑅𝐻(𝑇, 𝑅𝐻) = 𝑓𝑇(𝑇) ∙ 𝑓𝑅𝐻(𝑅𝐻) ∙ 𝑐(𝑈𝑇, 𝑈𝑅𝐻)         (3) 

where 𝑈𝑅𝐻 = 𝐹𝑅𝐻(𝑅𝐻), 𝑈𝑇 = 𝐹𝑇(𝑇), (note that U indicates that both URH and UT are uniformly distributed by construction on 

the domain [0,1]), and c is the copula density, which describes the dependence of the joint distribution fT, RH independently 

from the marginal distributions fT and fRH. Note that eq. (3) naturally extends to the case of an arbitrary number of random 135 

variables (Bevacqua et al., 2017), however here we focus on the bivariate case. Copulas allow for great flexibility in modelling 

complex dependence structures between several variables and there are a huge variety of parametric copula families available 

for statistical modelling purposes (Nelson, 2006; Salvadori and De Michele, 2007; Salvadori et al., 2007; Durante and Sempi, 

2015; Bevacqua et al., 2020a). However, note that following the methodologies developed by Rémillard and Scaillet (2009) 

and Vezzoli et al. (2017), here we will consider a non-parametric framework, i.e. we will consider empirical, rather than 140 

parametric, distributions within our testing procedures. This choice avoids unnecessary parametric-based assumptions on the 

distributions that could bias the results about both univariate and multivariate features.  

A characteristic of copulas is the invariance property (Salvadori et al. 2007, proposition 3.2), i.e. if g1 and g2 are monotonic 

(increasing) functions, then the transformed variables g1(T) and g2(RH) have the same copula as T and RH. This property is 

crucial to the methodology described in the following section, where the monotonic functions are the marginal CDFs of T and 145 

RH (or their inverses).  

3.2 Contribution of the bias in the drivers to the bias of CBI and WBGT 

We assess how biases in each of the marginal distributions of Tmod and RHmod , and Cmod (the copula of Tmod and RHmod) 

contribute to the bias in the representation of the extreme values of CBI and WBGT using their 95th percentile (Q95). This is 

achieved based on a methodology originally introduced by Bevacqua et al. (2019) to attribute changes in compound flooding 150 

to its underlying drivers (and employed by e.g., Manning et al. (2019) and Bevacqua et al. (2020b)).   

We carried out three experiments. In experiment i, we obtained, via a data transformation, a bivariate pair (Ti, RHi) with copula 

Ci where one component of the three underlying distributions (Ti, RHi, Ci) is the same as that of a given CMIP5 model, and 

the other two components are the same as ERA-Interim. We then perform the quantile tests described in 3.3.3 for CBI (or 

WBGT) using values based on (Ti, RHi) and (Terai, RHerai). The specific experiments carried out are described below. 155 
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Experiment a), assessing the bias contribution of Tmod: From the variable Terai we calculated the associated empirical cumulative 

distribution UT,erai. From the variable Tmod we calculated the empirical CDF FT,mod, through which we defined 

Ta=F⁻¹T,mod(UT,erai). The variable Ta has the same distribution as Tmod while the pair (Ta, RHerai) has the copula of ERA-Interim.   

Experiment b), assessing the bias contribution of RHmod: This experiment follows the same structure as experiment (a) but with 

the roles of Terai and RHerai reversed, from which we get the pairs (Terai, RHb) 160 

Experiment c), assessing the bias contribution of Cmod: From the variables (Tmod, RHmod) we calculated the associated marginal 

empirical cumulative distributions (UT,mod, URH,mod). From the variables Terai and RHerai, we defined the empirical CDFs FT,erai 

and FRH,erai, through which we defined  Tc=F⁻¹T,erai(UT,mod) and RHc=F⁻¹RH,erai(URH,mod).  The pair of variables (Tc, RHc) have 

the same marginal distributions as the pair (Terai, RHerai) but the copula of the model, i.e., Cmod, since (Tc, RHc) was obtained 

from (Tmod, RHmod) by monotonic transformations of the margins.  165 

3.3 Description of the testing procedure 

The full data processing procedure is shown in Figure 2. We began with the ERA-Interim and CMIP5 data and obtained T and 

RH samples (see section 2.1). The CMIP5 samples were then subject to the transformation procedure described in section 

3.2.4. This results in five sets of T and RH data corresponding to: the ERA-Interim reference, the original model sample, and 

the three experiments (a, b, and c) used to assess the bias contributions of biases in CMIP5 model T, RH and their copula. At 170 

this stage, the CBI and WBGT indices are calculated on all five sets. 

We execute univariate and multivariate non-parametric statistical tests to evaluate the properties of CBI, WBGT and their driver 

variables (i.e., T, RH, and their dependence) prior to proceeding with our bias decomposition approach. Details for each of the 

tests are provided below but, in general, we follow a non-parametric approach similar to Vezzoli et al. (2017). Each of the nine 

de-correlated ERA-Interim samples was independently tested on a cell-by-cell basis against a different CMIP5 model sample, 175 

therefore each statistical test is repeated nine times per model. To adjust for multiple testing, we use the conservative 

Bonferroni correction method, which penalises the significance level ɑ using the number of repeated tests m=9, so that the 

individual hypothesis tests are evaluated at an ɑ/m significance level (Jafari and Ansari-Pour, 2019). A 5% significance level 

is used, which after Bonferroni correction was adjusted to 0.0056 for use in each individual hypothesis test. All of our analysis 

was carried out in R (R Core Team, 2019), and the functions used for each test are detailed in their corresponding section 180 

below.  

Graphically, the statistical test results are presented as a percentage of all 108 CMIP5 model samples (9 samples times 12 

models) where the null hypothesis is rejected. The percentage we consider is calculated at each grid cell, and stippling is added 

where the null hypothesis is rejected in at least 75% (81/108) of all CMIP5 model samples.  

 185 

https://doi.org/10.5194/nhess-2020-383
Preprint. Discussion started: 23 November 2020
c© Author(s) 2020. CC BY 4.0 License.



 

7 

3.3.1 Univariate evaluation of T, RH, CBI, and WBGT 

In order to understand how faithfully the marginal distributions of T, RH, CBI and WBGT from the ERA-Interim data are 

represented in a given CMIP5 model, we perform the two-sample Anderson-Darling (AD) test via the ad.test function of the 

kSamples R-package (v1.2-9; Sholz and Zhu, 2019).  This is a non-parametric procedure that considers the null hypothesis: 

“the two samples are from the same distribution”. AD was selected over the Kolmogorov-Smirnov test as it is more sensitive 190 

to differences in the tails of the two distributions, while there is also evidence that it is the more powerful among the two tests 

(Engmann and Cousineau, 2011).  

3.3.2 Dependence between T and RH 

A simple way to test how well the dependence between the variables T and RH in ERA-Interim is represented in a given 

CMIP5 model, is to compare the calculated values of some statistical measure of association. Here we use Kendall's τ rank 195 

correlation. The cor.test function of the core stats R-package was used to perform all τ calculations (R Core Team, 2019). 

To test whether the values of τ obtained from a given model sample differ in a statistically significant way from the 

corresponding ERA-Interim values. We begin by considering the approximate 100(1 − 𝛼)% confidence interval (𝜏𝐿, 𝜏𝑈) for 

τ associated with the point estimator 𝜏
^
 given by:  

𝜏𝐿 = 𝜏
^
− 𝑧𝛼 2⁄ 𝜎,

^
𝜏𝐿 = 𝜏

^
+ 𝑧𝛼 2⁄ 𝜎

^
         (4) 200 

where 𝜎
^ 2 is an estimator of var(𝜏)

^

 (Hollander et al., 2014). For our testing we calculate 𝜎
^ 2, 𝜏

^
 and the confidence interval 

(𝜏𝐿, 𝜏𝑈) for each grid cell in all ERA-Interim samples, using a customised version of the kendall.ci function included in the 

NSM3 R-package (v1.15, Schneider et al., 2020). The CMIP5 model samples are then evaluated in two ways. Firstly, if the 

model sample value of τ lies within the confidence interval calculated for its corresponding ERA-Interim sample, the model 

sample is judged to not significantly differ from ERA-Interim in terms of the rank correlation between T and RH. Secondly, 205 

we calculated the 𝑧𝛼 2⁄  and hence the 𝛼 or p-value for each sample, these were tested for significance using the same 

Bonferroni-adjusted value of 0.0056 used in the univariate testing. The results from both testing methodologies are consistent 

with each other, we present the ad-hoc p-value test results in the main text and the confidence interval tests are included in the 

appendix.  

Note that different copulas may give rise to the same value of τ, therefore we cannot conclude that a model that faithfully 210 

reproduces the ERA-Interim values of τ is accurately representing the full dependence structure between T and RH.  Therefore, 

we account for the dependence structure by also carrying out hypothesis tests which are based on the full copula function.  We 

perform the non-parametric test of copula equality based on the Cramer-von-Mises test statistic proposed by Remillard and 

Scaillet (2009), used in Vezzoli et al. (2017) for testing the capability of a climate-hydrology model to reproduce the 

dependence between temperature, precipitation and discharge for the Po river basin in Italy, and recently employed by 215 

Zscheischler and Fischer (2020) for evaluating the ability of climate models to represent the dependence between temperature 
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and precipitation in Germany. The copula equality test has a null hypothesis of H0: Cerai = Cmod where Cerai and Cmod are the 

copulas of T and RH represented in ERA-Interim and a given model respectively, with the alternative hypothesis being that 

these copulas differ.  We used the TwoCop function of the TwoCop R-package (v1.0, Remillard and Plante, 2012) to run the 

test. 220 

 

3.3.3 Bias in the representation of extreme events of CBI and WBGT 

To evaluate how well CMIP5 models simulate extreme values of CBI and WBGT, we compare high quantiles (i.e. the 95th 

percentile Q95) of these indices from each model with those of ERA-Interim. To assess whether the observed differences in 

the quantiles are statistically significant, we calculate the 95% confidence intervals for the Q95 of CBI and WBGT at each 225 

location for ERA-Interim based on 1000 bootstrap samples. Like our evaluation of Kendall’s τ, if the model index lies outside 

the confidence interval we consider the model has a significantly different representation of extreme values of CBI and WBGT 

from ERA-Interim.  

4 Results 

4.1 Univariate evaluation of T, RH, CBI, and WBGT 230 

4.1.1 CBI and WBGT 

We began our analysis by visualising the multimodel mean of the mean values of CBI and WBGT during the hottest months. 

According to reanalysis, the mean CBI is highest in regions with dry and warm weather during the hottest month, such as the 

Sahara, most of Australia, and the western USA and Mexico (Figure 3a). In contrast, CBI tends to be low in humid and warm 

regions such as the Amazon and Congo basins. We move to evaluating the CMIP5 model biases in mean CBI, which appear 235 

large in magnitude (compare Figure 3b and 3a); most landmass covered in dark red or blue colours, indicating CMIP5 

multimodel mean bias of over 10°C from the ERA-Interim. In addition, AD test results show that 59% of global land mass has 

significant differences between ERA-Interim and CMIP5 distributions of CBI in at least 75% of model samples. Despite such 

biases in the representation of the mean CBI magnitude, the overall spatial patterns in mean CBI are well reproduced by the 

models. In fact, the area weighted pattern correlation (Pfahl et al., 2017), from now on pattern correlation, between models  240 

and reanalysis of mean CBI is high for all CMIP5 models, with a minimum value of 0.77 for the BCC CSM1.1.M model  

(Figure A2a shows the multimodel mean of mean CBI).  

In the reanalysis data, mean WBGT values over 30°C are reached over most tropical land masses during each location’s hottest 

month, with lower values in higher latitudes and the highest values near the Equator (Figure 3c). For WBGT, the pattern 

correlation between models and ERA-Interim is higher than for CBI, with a minimum value of 0.89 for the BCC CSM1.1.M 245 

model (Figure A2b shows the multimodel mean of mean WBGT). Mean multimodel bias in WBGT shows large parts of the 
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continents are within the +/- 0.5°C range relative to ERA-Interim. The AD test results indicate that the WBGT distributions in 

CMIP models are typically better than those of CBI; only 35% of grid cells fail our performance criterion (Figure 3d).  

Overall, CMIP5 models underperform in key regions associated with high fire and heat stress hazards. CBI’s distribution is 

not well represented by most CMIP5 models in regions characterized by high fire hazard levels such as the western USA and 250 

the Mediterranean basin, while CMIP5 WBGT results are significantly different to reanalysis in regions of high heat stress 

such as the Indian subcontinent and equatorial Africa. 

4.1.2T and RH 

Following the evaluation of CBI and WBGT, we move towards evaluating how CMIP5 models represent the driving variables 

of the hazard indicators, i.e. T, RH, and their statistical dependence. We first confirm that the expected latitudinal variation in 255 

T is present in ERA-Interim reanalysis (Figure 4a), and that RH is low over known desertic areas (Figure 4c).  

The spatial pattern of mean T is well represented by CMIP5 models (Figure A2c), with all models showing a pattern correlation 

over land with ERA-Interim above 0.93. However, significant differences in the representation of the distributions (based on 

the AD test) are found over the Amazon basin, where the multimodel mean bias in mean T is positive, and over Northern 

Africa and the Middle East, where the bias in mean T is negative (Figure 4b). Overall, we found that the area weighted 260 

multimodel mean of absolute value of the T bias is 1.6°C. The AD test results show that CMIP5 models fail to reproduce the 

observed ERA-Interim distribution of T over 40% of global land mass. 

We find worse model skills in representing the RH distribution; in fact, models failed the AD test over 59% of the global land 

mass (Figure 4d). The spatial pattern of RH is not as well represented as that of T, with minimum and maximum pattern 

correlations of 0.75 and 0.90 respectively (Figure A2d). The mean multimodel bias in RH is particularly large in the Amazon 265 

basin. Nevertheless, there are areas where the bias is relatively small, e.g., in Australia, Sahara, and eastern Asia. Notably, 

there is a clear resemblance between the bias patterns of mean RH (Figure 4d) and CBI (Figure 3b), with regions with high 

positive bias in RH corresponding to regions with strong negative bias in CBI, and an identical percentage of land mass showing 

significant differences. No similar behaviour is found for WBGT, i.e. the WBGT bias spatial pattern is similar neither to that 

of T nor RH bias. We will investigate this behaviour in CBI and WBGT in further detail in section 4.3. 270 

4.2 Dependence between T and RH 

The results for our tests on the dependency structure of T and RH in CMIP5 models are shown in Figure 5. Figures 5a and 5b 

show Kendall's τ correlation between T and RH based on ERA-Interim reanalysis and the mean multimodel bias of this 

correlation, respectively. T and RH are strongly negatively correlated (Figure 5a), with an area weighted mean value of -0.50 

(virtually all landmass has a significant correlation; not shown - results based on the indepTest function of the copula R-275 

package (v0.999-19.1; Hofert et al., 2018)). The presence of a negative correlation is illustrated in Figures 1 (and A1 for a 

representative location).  The area weighted absolute mean multimodel bias in τ is 0.095. The bias in τ is not significant for 

most of the global landmass for most of the models, i.e., the modelled correlations lie within the 95% confidence interval of τ 
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of ERA-Interim (see infrequent stippling over 5.3% and 9.3% of land masses in Figures 5b and A3 respectively). Results are 

similar for the copula equality test (Figure 5c), with an over 80% agreement in copula structure between ERA-Interim and 280 

models for 52% of landmasses, and 60-80% agreement in 33% of landmasses. Overall, the regions where we detect the highest 

amount of statistically significant differences in the copula structure and τ include parts of the Horn of Africa, India, and 

Amazon basin (see also Figure A1c and Figure A1d where the model values have different distributions to ERA-Interim).  

4.3 Contribution of the bias in the drivers to the bias in CBI and WBGT extremes  

4.3.1 Drivers of the biases in CBI extremes 285 

We now assess the biases in the representation of extreme events (95th quantile, Q95) in the CBI index, and the associated 

drivers of the biases (Figure 6). The spatial pattern of the CMIP5 multimodel mean of Q95 (Figure 6b) is very similar to that 

of ERA-Interim (Figure 6a). Figure 6c shows the biases in extreme CBI, whose highest values are in South America, central 

North America, and parts of central Asia; which is in line with the biases in mean CBI (Figure 3b). The area weighted mean 

of absolute bias in CMIP5 model CBI is 21°C, which is large compared to the area weighted mean CBI in ERA-Interim of 290 

84°C (i.e. corresponding to 25%). In fact, the stippling over 75% of land masses in Figure 6c indicates that the models differ 

significantly from ERA-Interim.  

The bias in RH is the main contributor to total mean bias in extreme CBI values (Figs. 6d-f). The relevance of RH for the bias 

in CBI is visible from the similarities in magnitude and spatial distribution of bias between Figure 6c and 6e. Furthermore, 

while the area weighted mean of absolute bias in CBI is 21°C, the corresponding mean biases due to T, RH, and the dependency 295 

between them are 3°C, 20°C and 3°C respectively. The relevant contribution of RH to the CBI index bias is in consistent with 

the definition of the index, which is mainly influenced by RH and to a lesser extent by T (see nearly horizontal CBI isolines in 

Figure 1); hence, also the dependency between T and RH plays a negligible role. As a result, while RH bias contributions drive 

significant biases in CBI about everywhere but in the Sahara and Australia (see stippling over 73% of land masses in Figure 

6c), T and dependence do not drive significant biases in CBI (see near-complete absence of stippling in Figure 6d and 6f). 300 

A closer examination of the bias decomposition results shows, for a site with large positive bias in Brazil, that the results 

shown in the multimodal mean bias plots (Figure 6c, e) reflect intermodel model behaviour at the local level. That is, CMIP5 

models with high RH bias contributions also show high overall CBI bias (Figure 7a). At this location, there is a positive 

intermodel correlation between the biases driven by T and RH (τ = 0.82; Figure 7b). Such behaviour is due to the combination 

of the following two reasons: (1) a negative intermodel correlation between the biases in T ad RH, i.e. CMIP5 models 305 

simulating too high temperatures also tend to simulate too low relative humidity (as discussed by Fischer and Knutti (2013)); 

and (2) the fact that CBI is high for low RH and high T. This feature is discussed in more detail in section 5. Similar results to 

those discussed above for the site in Brazil are also observed for another representative location in South Africa with large 

negative bias in CBI (SI Figure A4a). These locations are indicated throughout map plots with X markers.  
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4.3.2 Drivers of the biases in WBGT extremes 310 

The spatial pattern of Q95 in ERA-Interim (Figure 8a) and in the CMIP5 multimodel mean (Figure 8b) is similar with low 

values concentrated along mountain ranges such as the Andes and Himalayas and in high latitudes, and the highest values 

located in South America and the Indian subcontinent. In several regions worldwide, CMIP5 models tend to underestimate 

Q95 values of WBGT (global area weighted mean bias of -0.35°C) and show significant biases relative to ERA-Interim along 

the tropics and subtropics (Figure 8c). However, in terms of values of the bias, the CMIP5 representation of the WBGT appears 315 

better than that of CBI. The area weighted mean of absolute bias in the index is 1.1°C (Figure 8c), which is small compared to 

the area weighted mean WBGT in ERA-Interim, i.e. 29°C (Figure 8a). 

The decomposition of the bias shows that unlike CBI there is no single dominating source of bias in extreme values of WBGT 

(Figure 8d-f); all three possible sources contribute to the overall bias. Importantly, a degree of compensating biases is evident 

when comparing the multimodel mean biases driven by T (Figure 8d) and RH (Figure 8e). Large biases of opposite signs are 320 

evident over South America, central Asia, and other landmasses; hence, in these areas, the resulting biases in WBGT tend to 

be small (Figure 8c). Significant but opposite biases in T and RH (see stippling in Figures 8d and 8e) result in nonsignificant 

biases in WBGT (Figure 8c) over regions such as North America’s Mississippi basin and around Zaire in central Africa. 

Globally, this compensating behaviour can be observed in the percentages of land mass where each bias component is 

significant. T and RH driven biases are significant over 69% and 48% of global land mass respectively, while copula biases 325 

are significant over 12%; however, the total bias in WBGT is only significant over 39% of land masses. Further evidence for 

these compensating biases can be found by observing that the area weighted average of absolute bias in Q95 WBGT, i.e. 1.1°C, 

is smaller than the contributions from T and RH, i.e. 1.9°C and 1.4°C, respectively. In addition, we observe a tendency towards 

a lower bias, on average, driven by the copula component (global area weighted average of absolute bias equal to 0.85°C); 

note that, however, some relevant positive bias contributions exist over eastern Brazil and central Africa where the copula test 330 

shows higher frequencies of rejection (Figure 5c), and a negative contributions over northern Russia, Central United States, 

and eastern Europe (Figure 8f).  

The compensating bias in T and RH found above is in line with the findings of Fischer and Knutti (2013). Their results indicate 

that, at the local scale and for individual models, the biases in WBGT driven by T and RH tend to cancel each other out, 

resulting in small biases in the heat stress index. We find that this behaviour in individual models is reflected in the multimodel 335 

mean result (Figure 8c) in regions where most models have similar behaviours, e.g. where most models show a positive WBGT 

bias contribution from  T (Figure 8d) and a negative one from RH (Figure 8e). We confirm the behaviour in individual models 

for two representative locations. In Brazil, the small mean bias in WBGT Q95 for all CMIP5 models results from mostly 

positive and negative biases driven by T and RH, respectively, across models (Figure 9a; the figure also indicates that the bias 

driven by the dependence is small and positive). In particular, models affected by a positive T bias contribution in WBGT 340 

because of too high T tend also to be affected by a negative RH bias contribution because of too low RH (Figure 9b). The 

compensation of the biases in individual models arises from (1) opposite biases in T and RH (models simulating too high 
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temperatures also tend to simulate too low relative humidity; Fischer and Knutti (2013)), and (2) the WBGT tendency to be 

high (low) for humid and warm (dry and cold) conditions. Figure A5 illustrates such a cancellation of the bias in WBGT for a 

location in South Africa, where the negative dependency between T and RH leads to a small bias in WBGT. In this location, 345 

the model biases driven by T are negative, therefore those driven by RH are positive. 

5 Discussion 

Based on copula theory we have designed a non-parametric procedure for multivariate bias assessment, which decomposes 

the bias in hazard indicators into the bias in the drivers and their dependence. We apply our approach to study the contribution 

of T, RH, and their dependence to the bias in the fire and heat stress hazard indices CBI and WBGT. CMIP5 climate models 350 

show a good overall representation of the one-to-one pattern correlations of T, RH, CBI and WBGT, consistent with an 

acceptable representation of the first-order global-scale atmospheric circulation. However, considerable biases in CBI and 

WBGT over geographical areas with critical fire and heat stress risk exist.  

We found that the role played by the bias in the drivers to the bias in the associated hazard indicator differs among the hazards 

and at the regional level.  While CBI biases are mainly driven by biases in RH, for WBGT biases the interplay between biases 355 

in T, RH and their dependence matters for a number of areas including eastern Brazil, Africa, and parts of central North 

America and India. The geographical areas where the bias in the copula between T and RH is more relevant to the bias in 

WBGT coincide with the regions where the copulas of most models tend to differ from those of the reanalysis.  

These findings exemplify the need for multivariate bias adjustment methods, which can adjust climate model biases in the 

dependencies between multiple drivers of hazards (Francois et al., 2020; Vrac, 2018). Climate model output should be a reliable 360 

input for the bias adjustment methods, e.g., models should provide a plausible representation of large-scale atmospheric 

circulation (Maraun et al., 2016; 2017). The relevance of multivariate bias adjustment methods is also supported by the fact 

that adjusting biases variable by variable may even increase biases in impact-relevant indicators (Zscheischler et al., 2019). 

Nevertheless, Zscheischler et al. (2019) found that univariate bias-adjustment is relatively efficient in the case of CBI, while 

multivariate methods lead to much stronger reductions in the case of WBGT. This is consistent with our finding that the bias 365 

in RH is the main contributor to the bias in CBI, which is due to the fact that CBI variability is mainly driven by RH variability 

and to a lesser extent by T variability.  It should be noticed, however, that the considered fire indicator CBI is overly simplistic. 

In practice, weather conditions that promote fires are also related to wind speed and previous rainfall, which are for instance 

included in the Forest Fire Weather Index (FWI, Van Wagner, 1987), as well as fuel availability and aridity.   

The relative biases in WBGT extremes are smaller compared to the relative biases in CBI even though biases in WBGT are 370 

typically related to both biases in T and RH. In fact, biases in WBGT are smaller than the bias contributions from T and RH. 

This demonstrates the presence of compensating biases for WBGT. In line with Fischer and Knutti (2013), models which tend 

to simulate too high T also tend to simulate too low RH (and vice versa), which results in relatively smaller absolute biases in 

the WBGT of individual models. A negative intermodel correlation between the contributions of T and RH to WBGT biases 

https://doi.org/10.5194/nhess-2020-383
Preprint. Discussion started: 23 November 2020
c© Author(s) 2020. CC BY 4.0 License.



 

13 

reduces the biases in WBGT in the CMIP5 average. For the fire hazard, one may expect an enhancement of the T and RH biases 375 

rather than a compensation (Fischer and Knutti, 2013), given that we have found a positive correlation between the bias driven 

by T and RH. However, we found that such a potential enhancement of the biases caused by the bivariate interaction between 

the bias driven by T and RH does not occur for the considered fire hazard indicator, i.e. CBI, because the index is mainly 

controlled by RH (see isolines in Figure 1c), which also controls the biases of the index. These results underline the importance 

of attributing the sources of biases in hazard and risk indicators on a compound/multivariate perspective in terms of the 380 

dependency between the driver variables, rather than focusing on purely univariate assessments. The presented bias-

decomposition method would potentially become even more relevant when considering more complex hazard indicators driven 

by more variables, such as the case of fire hazard as outlined above. This would require an extension of the bivariate copula 

framework, potentially using vine copula decompositions such as those employed in Hobæk Haff et al. (2015). 

Given the critical importance of addressing compound/multivariate events that are often associated with extreme impacts 385 

(Leonard et al., 2014; Zscheischler et al., 2018), we assessed the bias decomposition for high quantiles of CBI and WBGT. The 

extremes of the considered indicators are not necessarily caused by extreme values of the drivers. Hence, the characterization 

of the dependence structure between their climate drivers (i.e., T and RH) was performed in terms of their full joint distribution 

to capture all the events, i.e. we did not only consider the combination of simultaneous T and RH extremes. However, 

depending on the type of hazard considered, investigating biases in the tail dependence between the drivers may be relevant 390 

to understanding the biases in the hazard. For example, the tail dependence between storm surge and precipitation, which is 

relevant for compound coastal flooding, may be slightly underestimated in CMIP5 models (Bevacqua et al., 2019). Similarly, 

there is evidence that the tail dependence between hot and dry conditions may be underestimated by climate models in some 

cases (Zscheischler & Fischer, 2020). 

The present methodology can be used for assessing the sources of bias in other types of compound events caused by other sets 395 

of dependent drivers, such as compound drought and heat (Zscheischler and  Seneviratne, 2017) and compound coastal 

flooding (Bevacqua et al., 2020b).  Other types of compound events, e.g., temporal clustering of storms (Bevacqua et al. 2020c; 

Priestley et al., 2017) and simultaneous extreme events in distant regions (Kornhuber et al., 2020), can also lead to large 

impacts and are therefore relevant for the impact community. A compound event-oriented evaluation of impacts similar to that 

proposed here, i.e. disentangling the biases in the individual physical drivers, could be adopted in future studies to aid present 400 

and future impact assessments.   

6 Conclusions 

Climate model data contains biases that need to be evaluated and ultimately adjusted to avoid misleading risk assessments. 

However, while many climate-related extreme impacts are caused by the combination of multiple variables, i.e. compound 

events, climate model evaluation methods typically do not consider the multivariate nature of the hazards. In this study, we 405 

took a compound event-perspective and, based on copula theory, introduced a multivariate bias-assessment framework, which 
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allows for disentangling and better understanding the multiple sources of biases in hazard indicators. Here, we investigated 

how the biases in temperature, relative humidity, and their dependence, affect the overall biases in fire and heat stress indicators 

(CBI and WBGT, respectively). We found that biases in CBI are mainly driven by biases in relative humidity, in line with the 

fact that the index is only marginally affected by temperature. In contrast, the biases in WBGT are often driven by biases in 410 

temperature, relative humidity, and their statistical dependence. Opposing biases in temperature and relative humidity tend to 

compensate for each other, resulting in relatively small biases in WBGT. The results highlight areas where a careful 

interpretation of these indicators is required and where multivariate bias corrections of temperature and relative humidity 

should be considered future risk assessments.  

Given the relevance of compound weather and climate events for societal impacts, the presented framework could be useful 415 

in further studies aiming at disentangling and better understanding the drivers of the biases in the representations of other 

impacts. The framework could also be useful to assess biases among drivers of hazards when data for the hazard indicators are 

not available. A compound event oriented model evaluation of modelled impacts and associated drivers would be beneficial 

for disaster risk reduction and, ultimately, could feedback into climate model development processes and stimulate the design 

of new bias-adjustment methods. 420 
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Figure 1: Copula-based conceptual framework developed in this study to evaluate biases in CBI and WBGT indices. The framework 

is illustrated for a representative location in Brazil (Amazon, 5ºS and 56.5ºW; indicated via X markers in the next figures). Panel (c) 

shows that both CBI and WBGT indicators are functions of Temperature T and Relative humidity RH (see isolines of equal levels of 

CBI in orange and WBGT in green). Panel (c) also shows the bivariate distribution of (T, RH) within which grey and black dots show 565 
data for ERA-Interim and CMIP5 model BNU-ESM, respectively (period 1979-2005). Copula theory allows for decomposing the 

bivariate probability density function (pdf) of T and RH in terms of the marginal pdf of T (a) and RH (d) and the copula density that 

describes their dependence (b) (see the text for more details). Such a decomposition allows for disentangling the biases in the indices 

in terms of the driving biases in the marginals and copula; here, these biases are visible as the differences in the empirical pdf of the 

CMIP5 model (black) and the reference dataset, i.e. ERA-Interim (grey). 570 
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Figure 2:  Block-diagram showing the data and methods used. Temperature (T) and relative humidity (RH) decorrelated samples 

from CMIP5 models’ biases are analysed using univariate and multivariate statistical tests using ERA-Interim as reference dataset. 

We also create transformed CMIP5 model samples, which allow for assessing the bias in the extreme values of the hazard indicator 575 
(CBI and WBGT) driven by biases in T, RH, as well as their statistical dependence. 
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Figure 3: Mean fire hazard index (CBI) value for ERA-Interim (a), mean multimodel bias in mean CBI (b). Note that the palette is 

nonlinear, as it follows typical defined ranges of fire hazard levels based on the CBI, i.e. Very Low, Low, Moderate, High, Very High, 580 
and Extreme. Mean heat stress index (WBGT) value for ERA-Interim (c), and mean multimodel bias in mean WBGT (d). Stippling 

indicates locations where at least 75% of CMIP5 models failed the AD two-sample test between the CMIP5 and ERA-Interim 

distributions of CBI and WBGT. Bias was calculated as (CMIP5 - ERA-Interim). 
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 585 

Figure 4: Mean temperature (T) of the hottest month in ERA-Interim reanalysis (a), mean CMIP5 multimodel bias in mean 

temperature (b), mean relative humidity (RH) of ERA-Interim reanalysis (c), and mean CMIP5 multimodel bias in mean relative 

humidity (d). Stippling indicates locations where at least 75% of models failed the AD two-sample test between the CMIP5 and ERA-

Interim marginal distributions of T and RH. Bias was calculated as (CMIP5 - ERA-Interim). 

  590 
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Figure 5. Mean ERA-Interim correlation (τ) between T and RH (a), mean CMIP5 multimodel bias in τ (b), the proportion of CMIP5 

samples where the Copula equality was rejected (c). Stippling indicates locations where the correlation of more than 75% of CMIP5 

model samples have significantly different values to ERA-Interim, as calculated using Bonferroni-corrected p-values. Bias was 

calculated as (CMIP5 - ERA-Interim). 595 
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Figure 6: ERA-Interim (a) and CMIP5 multimodel mean (b) 95th quantile CBI values. Note that the palette is non-linear, as it 

follows typical defined ranges of fire hazard levels based on the CBI, i.e. Very Low, Low, Moderate, High, Very High, and Extreme. 

Mean CMIP5 multimodel bias in Q95 CBI (c), and its decomposition into bias due to the T (d), RH (e) and Copula (f) components 

of the model. Stippling indicates locations where more than 75% of CMIP5 model sample values lie outside the 95% confidence 600 
interval for ERA-Interim estimated based on bootstrap. Bias was calculated as (CMIP5 or Transformation - ERA-Interim). 
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Figure 7: Spread of mean total bias in the 95th quantile (Q95) of CBI and its contribution from T, RH and their copula for individual 

CMIP5 models (a), and a scatter plot of the T and RH contributions to Q95 CBI bias, with their Kendall rank correlation coefficient 605 
(p-value<0.001) (b). Shown are the results for a grid-point in Brazil (Amazonia, 5ºS and 56.5ºW). Bias was calculated as (CMIP5 or 

Transformation - ERA-Interim). 
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Figure 8: ERA-Interim (a) and CMIP multimodel mean (b) 95th quantile CBI values, mean CMIP5 multimodel bias in Q95 CBI (c), 

and its decomposition into bias due to the T (d), RH (e) and Copula (f) components of the model. Stippling indicates locations where 610 
more than 75% of CMIP5 model sample values lie outside the 95% confidence interval for ERA-Interim estimated based on 

bootstrap. Bias was calculated as (CMIP5 or Transformation - ERA-Interim). 
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Figure 9: Spread of mean total bias in the 95th quantile (Q95) of WBGT and its contribution from T, RH and their copula for 

individual CMIP5 models (a), and a scatter plot of the T and RH contributions to Q95 WBGT bias, with their respective Kendall 615 
rank correlation coefficient (p-value < 0.001). Shown are results for a grid-point in Brazil (Amazonia, 5ºS and 56.5ºW). Bias was 

calculated as (CMIP5 or Transformation - ERA-Interim). 

  

https://doi.org/10.5194/nhess-2020-383
Preprint. Discussion started: 23 November 2020
c© Author(s) 2020. CC BY 4.0 License.



 

28 

Appendix A Information 

 620 

Figure A1: Samples of hourly 2-meter air Temperature (ºC) versus Relative Humidity (%) during the period 1979-2005 for ERA-

Interim reanalysis (grey points) and 4 models (black points) from the CMIP5 multi-model ensemble (BNU-ESM (a), GFDL-CM3 

CNRM-CM5 (b), GFDL-CM3 (c) and IPSL-CM5A-LR (d)) for a grid-point in Brazil (Amazon, 5ºS and 56.5ºW) indicated 

throughout map plots in Results section with X markers. The isolines illustrate equal levels of the hazard indices of fire (orange) and 

heat stress (green), corresponding to CBI and WBGT indices, respectively, which are both functions of Temperature and Relative 625 
humidity. 
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Figure A2: CMIP5 multimodel mean fire hazard index (CBI) value (a), heat stress index (WBGT) value f (b), temperature (T) value 

(c), and mean relative humidity (RH) (d).  

 630 
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Figure A3: As Figure 5b but where stippling indicates locations where more than 75% of CMIP5 model sample values lie outside 

the 95% confidence interval for ERA-Interim. 

 635 

 

Figure A4: As Figure 7 for a grid-point in South Africa (32.5ºS and 23.5ºE), Kendall rank correlation p-value = 0.12. 
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Figure A5: As Figure 9 for a grid-point in South Africa (32.5ºS and 23.5ºE), Kendall rank correlation p-value = 0.063. 
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